MUTUAL INTERPRETABILITY OF WEAK ESSENTIALLY UNDECIDABLE THEORIES

نویسندگان

چکیده

Abstract Kristiansen and Murwanashyaka recently proved that Robinson arithmetic, Q, is interpretable in an elementary theory of full binary trees, T. We prove that, conversely, T Q by producing a formal interpretation concatenation QT + , thereby also establishing mutual interpretability with several well-known weak essentially undecidable theories numbers, strings, sets. introduce “hybrid” strings WQT*, establish its Robinson’s arithmetic R, the trees WT Murwanashyaka, WTC ε Higuchi Horihata.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undecidable fragments of elementary theories

We introduce a general framework to prove undecidability of fragments. This is applied to fragments of theories arising in algebra and recursion theory. For instance, the V3V-theories of the class of finite distributive lattices and of the p.o. of recursively enumerable many-one degrees are shown to be undecidable.

متن کامل

Diophantine undecidable theories of arithmetic

1 Diophantine undecidability Let T be a theory in the usual rst-order language of arithmetic L A (with non-logical symbols 0; 1; +; ; <) extending PA ? , the theory of the nonnegative parts of discretely ordered rings. I shall make use of the usual classes of L A-formulas deened in terms of quantiier complexity, 9 1 1 is the set of L A-formulas of the form 9 x (x; y) with quantiier-free, and 1 ...

متن کامل

Undecidable Theories of Lyndon Algebras

With each projective geometry we can associate a Lyndon algebra. Such an algebra always satisfies Tarski’s axioms for relation algebras and Lyndon algebras thus form an interesting connection between the fields of projective geometry and algebraic logic. In this paper we prove that if G is a class of projective geometries which contains an infinite projective geometry of dimension at least thre...

متن کامل

Undecidable First-Order Theories of Affine Geometries

Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (β) and a quaternary equidistance relation (≡). Tarski established, inter alia, that the first-order (FO) theory of (R2, β,≡) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R2, β) with unary predicates is decidable. We r...

متن کامل

Undecidable theories of valuated abelian groups

© Mémoires de la S. M. F., 1984, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Logic

سال: 2022

ISSN: ['1943-5886', '0022-4812']

DOI: https://doi.org/10.1017/jsl.2022.15